

Boston's Public Research University

Office of Institutional Research, Assessment, and Planning

**Research Brief** 

November 2017

www.umb.edu/oirap

# Factors and Techniques for Projecting Enrollment

Accurate enrollment forecasting is crucial for effective fiscal and program planning at any higher education institution that relies on revenue generation from student enrollment. Scholars have identified different factors and techniques for forecasting student enrollment. The purpose of this report is to list some of those factors and techniques to provide guidance to the UMass Boston leaders in choosing the factors and a technique that would be appropriate for the institution.

Enrollment projection models are intricate as there are many different factors to consider and techniques to choose from for an accurate estimation. Factors may vary based on the type of the institution (private vs. public), the purpose of the enrollment prediction (budgeting vs. staffing), the types of enrollment (full-time vs. part-time), and so on. Techniques may vary based on the data availability, purpose, population sub-group that behaves differently, an acceptable level of accuracy, and so on. Appropriateness of the factors and techniques may vary from state to state, school to school, or even in different schools in the same city. A list of the underlying factors that drive the quantitative methods of enrollment projection modeling is presented below.

## Unmanageable and Manageable Factors

Brinkman & McIntyre (1997)<sup>1</sup> classified the factors affecting enrollment into two primary groups: those that are manageable and those that are not. Unmanageable factors are those "outside the institution that are typically associated with demand analysis," i.e., external environment (Table 1). Manageable factors are the internal actions that are normally in the control of the institution (Table 1).

which students undergo their college experiences

- Anything that may affect how students evaluate

the investment and consumption benefits of

attending an institution can influence their

decisions to attend (or to stay enrolled)

| Unmanageable Factors                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Demographic Factors<br>- Population's age structure<br>- Racial and ethnic composition<br>- Skill levels<br>- Prior education experience<br>- Total inhabitants<br>- Shifts in the location and existence of<br>geographical constraints on transportation for the<br>commuter schools |                                      | Econom<br>- Disposable income<br>- Unemployment rat<br>- The general econo<br>education<br>- The demand for, ar<br>specific areas<br>- Economic cycle<br>- Institutions budget                                          | <b>tic Factors</b><br>es of potential students<br>es<br>omic returns to college<br>nd return to, training in | Action of Competitors<br>- Substitute institutions'<br>manageable factors, e.g.,<br>tuition and fees, financial<br>aid, admissions policies,<br>changes in programs, and<br>when and where they<br>deliver services |  |
| Social and Cultural Factors<br>- Change in the role of women in the society<br>- Generational differences in test scores, use of<br>technology, and learning styles                                                                                                                    |                                      | Public Policy   - Legislatively set tuition and fees   - Admissions criteria   - Degree requirements   - Other policies that alter the public's preferences for higher education generally or for specific institutions |                                                                                                              |                                                                                                                                                                                                                     |  |
| Manageable Factors                                                                                                                                                                                                                                                                     |                                      |                                                                                                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                     |  |
| Pricing                                                                                                                                                                                                                                                                                | Institutional Policies               |                                                                                                                                                                                                                         | Campus Climate                                                                                               |                                                                                                                                                                                                                     |  |
| - Tuition                                                                                                                                                                                                                                                                              | - Marketing effort                   |                                                                                                                                                                                                                         | - Student and other support services, such as                                                                |                                                                                                                                                                                                                     |  |
| - Fees                                                                                                                                                                                                                                                                                 | - Admission policies and practices   |                                                                                                                                                                                                                         | counseling and placement                                                                                     |                                                                                                                                                                                                                     |  |
| - Residence hall costs                                                                                                                                                                                                                                                                 | - Registration and course enrollment |                                                                                                                                                                                                                         | - Adequacy of facilities                                                                                     |                                                                                                                                                                                                                     |  |
| - Financial aid - Academic proba                                                                                                                                                                                                                                                       |                                      | ation and dismissal                                                                                                                                                                                                     | - The appearance of the campus                                                                               |                                                                                                                                                                                                                     |  |
| <b>Ouality of Education</b> policies                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                         | - The general academic and social environment in                                                             |                                                                                                                                                                                                                     |  |

Table 1: Unmanageable and Manageable Factors

Source: Brinkman, P. T., & McIntyre, C. (1997). Methods and techniques of enrollment forecasting

- Location and scheduling of programs

- Addition and deletion of programs and

- Curriculum

- Length of programs

courses

- Student outcome obtained

Employment

- Institution's rating

data

from

after graduation

# **Other Common Factors**

**Retention:** past trend in retention<sup>2,3</sup> is one of the must-have components as the retained students make up the highest percentage of enrollment.<sup>4</sup> Retention may vary in different colleges in the same institution or different majors within the same college. One model uses a cohort retention method to project the number of returning undergraduate students for upcoming years by using trend analyses that includes predicting the number of continuing students who—1) will be promoted to the next year-in-school, 2) will return in the same year-in-school, and 3) return to the institution after an absence of more than the previous summer session,<sup>5</sup> i.e., re-admitted students.

**The Number of High School Graduates:** the number of high school graduates<sup>6,7</sup> has an impact on college enrollment. Historical trends and projections of future graduates have been used<sup>8</sup> for enrollment projection. Racial/ethnic categories should be carefully examined for private and public school graduates as they may significantly depend on the population of a region.

Past trends in recruitment<sup>9</sup> and migration statistics such, as state and regional net in-migration and out-migration of students affect student enrollment.<sup>10</sup> The rate of increase in college tuition relative to the growth in family income, trends in federal and state financial aid, and employment

prospects of recent graduates are responsible for changing enrollment patterns.<sup>11</sup> The list of factors affecting enrollment can become longer and more complex when various uncertain external factors occur. For example, antiimmigration policies affecting the children from the families of the undocumented immigrants<sup>12</sup> or domestic or international crises and changes in federal or state government policies affecting a given institution.<sup>13</sup>

# **Commonly Used Techniques**

Curve-fitting (trend analyses) and causal models (explanatory, structural, and econometric) are the two quantitative approaches most commonly used for projecting enrollment.<sup>14</sup> The curve-fitting technique has been widely used, especially by the state forecasters, as this technique requires only the historical data, that is, historical information about enrollment patterns (Table 2).<sup>15</sup>

Curve-fitting techniques or trend analyses assume that the effect of political, social and economic trends in student enrollment in the previous years will continue to affect in the future by viewing enrollment as a function of time alone.<sup>16</sup> Although using this technique to find "patterns" is useful when conditions are expected to be alike for example, continuous growth,<sup>17</sup> the causal model is more accurate as it takes the cause and effect relationships between independent factors and enrollment patterns into account (Table 4).<sup>18</sup>

| Table 2: List of Commonly | Used Curve-Fitting Techniques |
|---------------------------|-------------------------------|
|---------------------------|-------------------------------|

| Curve-fitting Techniques |                                                  |                                                           |  |  |
|--------------------------|--------------------------------------------------|-----------------------------------------------------------|--|--|
| Technique                | Description                                      | Limitations and Assumptions                               |  |  |
| Simple                   | Uses the mean of past enrollments as the         | Generally not a good choice because enrollment is not     |  |  |
| averages                 | enrollment forecast for the next time period.    | consistent from year to year.                             |  |  |
|                          | Depending on the availability of past            |                                                           |  |  |
|                          | enrollment data, the average can be based on     |                                                           |  |  |
|                          | long or short time periods.                      |                                                           |  |  |
| Moving                   | This is similar to simple averages technique,    | Appropriate for short-range forecasting: less rigid than  |  |  |
| averages                 | except that a fixed number of past enrollment    | simple averages. As enrollment trends become more         |  |  |
|                          | figures are used to estimate future enrollments. | pronounced, fewer data points should be included. In      |  |  |
|                          |                                                  | times of continued expansion (or contraction) of          |  |  |
|                          | 1 '.' C '                                        | enrollments, moving-average technique is inappropriate.   |  |  |
| Exponential              | is a variation of averaging techniques; most     | Appropriate for snort-range forecasting; similar          |  |  |
| smootning                | most heavily and each successively earlier date  | anticulties as averaging techniques during periods of     |  |  |
|                          | point is weighted less than the previous one     | continued expansion (of contraction) of enforment.        |  |  |
| Polynomial               | Uses a standard least squares estimation for     | No guarantee that the curve will not change shape         |  |  |
| models                   | three orders of polynomials: linear quadratic    | substantially for the forecast years. Numbers of data     |  |  |
| models                   | or some more complex order                       | points must be at least equal to the number of parameters |  |  |
|                          | or some more complex order.                      | to be estimated. Difficult to determine beforehand        |  |  |
|                          |                                                  | appropriate polynomial order.                             |  |  |
| Exponential              | Parameters are multiplied together rather than   | Reflects more accurately some situations in which rate of |  |  |
| models                   | added.                                           | growth or shrinkage of enrollment is constant.            |  |  |
| Spectral                 | Is a special form of the polynomial model        | Usually inappropriate for enrollment projections because  |  |  |
| analysis                 | using trigonometric functions (sine and cosine)  | it requires a minimum or approximately 25 historical data |  |  |
|                          | to replace "t".                                  | points.                                                   |  |  |

Source: copied from Kraetsch, G. A. (1979). Methodology and Limitations of Ohio Enrollment



Source: Google Images

| Table 4: List of Commonly Used Co | ausal Models |  |
|-----------------------------------|--------------|--|
|-----------------------------------|--------------|--|

| Causal Models        |                                                         |                                                   |  |  |  |
|----------------------|---------------------------------------------------------|---------------------------------------------------|--|--|--|
| Technique            | Description                                             | Limitations and Assumptions                       |  |  |  |
| Cohort-              | Identifies a group of individuals with common traits,   | Assumes that net migration, mortality, and school |  |  |  |
| survival             | such as grade level or year of birth. This group is     | attendance patterns will remain stable over time. |  |  |  |
| techniques           | aged through the educational system by the:             |                                                   |  |  |  |
|                      | -grade-progression or class-succession method; or       |                                                   |  |  |  |
| Datio                | -age-survival method.                                   | Lass accurate then achart survival techniques     |  |  |  |
| mathods              | the total population by age groups. These               | Less accurate than conort-survival techniques     |  |  |  |
| memous               | extrapolated values of ratios are then used for         | which are compiled with historical data           |  |  |  |
|                      | enrollment projections.                                 | which are complied with instorical data.          |  |  |  |
| Markov               | Uses a transition matrix to estimate numbers of         | Assumes that enrollments in one year are          |  |  |  |
| transition           | students enrolled at each level in the next time        | dependent only on enrollments of the previous     |  |  |  |
| model                | period. Model is applied successively for forecasting   | year. Can design student flow models.             |  |  |  |
|                      | purposes.                                               |                                                   |  |  |  |
| Multiple             | Determines relationship between enrollments             | Permits development of econometric models of      |  |  |  |
| correlation          | (dependent variable) and one or more independent        | student behavior patterns (e.g., income, tuition, |  |  |  |
| and .                | variables, such as high school graduates, per capita    | draft laws).                                      |  |  |  |
| regression           | income, ethnic background, and student demand           |                                                   |  |  |  |
| methods              | estimation. Includes autocorrelation and                |                                                   |  |  |  |
| Doth                 | Extension of multiple correlation and regression        | Rost suited for student demand and not direct     |  |  |  |
| r aui-<br>analytical | models except uses a priori identification of causal    | enrollment projections                            |  |  |  |
| models               | relationships                                           | entonment projections.                            |  |  |  |
| Systems of           | Uses a series of equations to link different parameters | Few models developed                              |  |  |  |
| equations            | of interest, such as optimization, simulation or        | rett models developed.                            |  |  |  |
| -Turton)             | student flow models.                                    |                                                   |  |  |  |
|                      |                                                         |                                                   |  |  |  |

Source: copied from Kraetsch, G. A. (1979). Methodology and Limitations of Ohio Enrollment Projections

#### **Time Series Analysis**

**Box-Jenkins (ARIMA):** auto-regressive integrated moving average (ARIMA) involves three basic parameters: 1) the amount of autocorrelation, 2) the level of systematic change over time, and 3) the component for including a moving average of the time based points. This model requires

longitudinal data with a minimum of forty-five or sixty data points to achieve highly accurate forecasting.<sup>19</sup>

**Fuzzy time series:** this model can be constructed for a nonlinear pattern of enrollment forecasts in which the values of the time series are linguistic terms represented by fuzzy sets. It is more of a data mining approach that is more

frequently used to forecast enrollment rather than offers the explanation of enrollment changes.<sup>20</sup>

**Qualitative methods** and **subjective judgment** have also been used for forecasting student enrollment where the subjective estimates of influential factors can be implemented when an objective or mathematical model is unavailable<sup>21</sup>. Lastly, many higher education institutions use a **combination of quantitative and qualitative** approaches for forecasting enrollment.

## Linear Trend Analyses for UMass Boston Enrollment Projection

Dr. James J. Hughes, Associate Provost for Institutional Research, Assessment, and Planning created a pilot model for projecting enrollment in Fall 2016. This model employed three widely used techniques for trend analyses: linear (i.e., a straight line of best fit to time series historical data using the method of least squares), smoothed linear (i.e., moving averages technique added to the linear model for reducing or smoothing out the effect of random variations or irregular roughness in the time series data), and adjusted trends (adjusted for seasonal components such as spring enrollment as a percent of fall enrollment and trend component such as underlying techniques like averaging). This pilot model used these curve-fitting techniques at various levels of disaggregation of student types as well as took a number of factors that influence student enrollment at UMass Boston into account. Nevertheless, these techniques have produced a misleadingly optimistic enrollment projection.

We believe that the factors and techniques presented above have strong potentials for improving the current pilot model.

#### This list is compiled by the OIRAP Research Analyst Fatema Binte Ahad from the existing literature.

Acknowledgements: Dr. James J. Hughes and Dr. Douglas Ducharme.

<sup>8</sup> University of California. (2010). Undergraduate Enrollment Demand Projection Methods. Retrieved from: http://www.ucop.edu/institutionalresearch-academic-planning/\_files/apdx3.pdf

<sup>9</sup> Office of the Registrar, Iowa State University. (2000). Enrollment Projection Methodology.

<sup>11</sup> ibid

<sup>12</sup> Pivovarova, M., & Vagi, R. (2016). Better schools or different students? Immigration reform and school performance in Arizona. Brookings. Retrieved from:https://www.brookings.edu/blog/brown-centerchalkboard/2016/04/15/better-schools-or-different-studentsimmigration reform and school performance in gripped.

<sup>14</sup> Brinkman, P. T., & McIntyre, C. (1997). Methods and techniques of enrollment forecasting. *New directions for institutional research*, *1997*(93), 67-80.

<sup>15</sup> Kraetsch, G. A. (1979). Methodology and Limitations of Ohio Enrollment Projections. The AIR Professional File, No. 4, Winter 1979-80.

<sup>16</sup> ibid

<sup>17</sup> Brinkman, P. T., & McIntyre, C. (1997). Methods and techniques of enrollment forecasting. *New directions for institutional research*, *1997*(93), 67-80.

<sup>18</sup> Kraetsch, G. A. (1979). Methodology and Limitations of Ohio Enrollment Projections. The AIR Professional File, No. 4, Winter 1979-80.

<sup>19</sup> Chen, C-K. (2008). An Integrated Enrollment Forecast Model. Association for Institutional Research, IR Applications, V. 15.

<sup>20</sup> ibid

<sup>21</sup> ibid

<sup>&</sup>lt;sup>1</sup> Brinkman, P. T., & McIntyre, C. (1997). Methods and techniques of enrollment forecasting. *New directions for institutional research*, 1997(93), 67-80.

<sup>&</sup>lt;sup>2</sup> Office of the Registrar, Iowa State University. (2000). Enrollment Projection Methodology.

<sup>&</sup>lt;sup>3</sup> Institutional Knowledge Management, University of Central Florida. Enrollment Projection Model. Retrieved from: https://ikm.ucf.edu/files/2014/04/10.2015-SAIR-Enrollment-Projection-Model.pdf

<sup>&</sup>lt;sup>4</sup> Redlinger, L. J., Etheredge, S., & Wiorkowski, J. (2013). Using Applications, Admissions Data to Forecast Enrollment. Presented at the annual meeting Association for Institutional Research Long Beach, California May, 18-22, 2013.

<sup>&</sup>lt;sup>5</sup> ibid

<sup>&</sup>lt;sup>6</sup> Chen, C-K. (2008). An Integrated Enrollment Forecast Model. Association for Institutional Research, IR Applications, V. 15.

<sup>&</sup>lt;sup>7</sup> Clagett, C. A. (1989). Credit Headcount Forecast for Fall 1989-90: Component Yield Method Projections. Planning Brief PB90-3.

<sup>&</sup>lt;sup>10</sup> Chen, C-K. (2008). An Integrated Enrollment Forecast Model. Association for Institutional Research, IR Applications, V. 15.

immigration-reform-and-school-performance-in-arizona/

<sup>&</sup>lt;sup>13</sup> Chen, C-K. (2008). An Integrated Enrollment Forecast Model. Association for Institutional Research, IR Applications, V. 15.