Math 115 - College Algebra Measurable Outcomes

Mathematics Department, UMass Boston

Reference text: Numbers in brackets refer to sections of Miller, O'Neill, and Hyde, Intermediate Algebra, fourth edition.

Note: Outcomes marked (Optional) may appear on the final exam with the unanimous consent of all instructors.

1. Linear equations in one variable

$\mathbf{1 (a)}$ Distinguish linear from non-linear equations. [1.1]
1(b) Solve linear equations in one variable. [1.1]
1(c) (Optional) Model word problems with linear equations. [1.2]
$\mathbf{1 (d)}$ Solve for one variable in a linear equation involving several variables. [1.3]

2. Linear inequalities in one variable

2(a) Solve linear inequalities in one variable. [1.4]
$\mathbf{2 (b)}$ Describe unions and intersections of sets of real numbers. [1.5]
2(c) Solve systems of linear inequalities connected by "and" or "or." [1.5]

3. Equations and inequalities with absolute values

3(a) Solve equations involving one or two absolute value expressions. [1.6]
$\mathbf{3 (b)}$ Solve inequalities with one absolute value expression. [1.7]

4. Linear equations in two variables

4(a) Write a linear equation in standard form. [2.1]
4(b) Find the intercepts of a linear equation. [2.1]
4(c) Generate additional solutions of a linear equation. [2.1]
4(d) Recognize horizontal and vertical lines. [2.1]

4(e) Interpret slope as rise over run. [2.2]
$\mathbf{4 (f)}$ Compute the slope of a line from two of its points. [2.2]
4(g) Recognize parallel and perpendicular lines by comparing their slopes. [2.2]
4(h) Write a linear equation in slope-intercept form. [2.3]
4(i) Graph a linear equation in slope-intercept form. [2.3]
$4(\mathrm{j})$ Find the equation of a line, given its slope and y-intercept. [2.3]
4(k) Use the point-slope form to find the equation of a line, given its slope and one point. [2.3]
4(1) Find the equation of a line, given two points. [2.3]
$\mathbf{4 (m)}$ Write the equation of a line parallel or perpendicular to a given line, through a given point. [2.3]
4(n) (Optional) Model word problems using linear equations in two variables. [2.4]

5. Relations and functions

$\mathbf{5 (a)}$ Write a relation as a set of ordered pairs. [2.5]
$\mathbf{5 (b)}$ Describe the domain and range of a relation. [2.5]
$\mathbf{5}(\mathbf{c})$ Distinguish functions from more general relations. [2.6]
$\mathbf{5}(\mathrm{d})$ Recognize the graph of a function using the Vertical Line Test. [2.6]
$5(\mathrm{e})$ Use function notation. [2.6]
$\mathbf{5 (f)}$ Read function values from a graph. [2.6]
$\mathbf{5}(\mathrm{g})$ Find the largest possible domain of a function, given a formula for the function. [2.6]
$\mathbf{5 (h)}$ Recognize constant, linear, and quadratic functions. [2.7]
$\mathbf{5 (i)}$ Reproduce the graphs of the identity, squaring, cubing, absolute value, square root, and reciprocal functions. [2.7]
$\mathbf{5}(\mathbf{j})$ Find the x - and y-intercepts of a function, given a formula for the function. [2.7]

6. Systems of linear equations

6(a) Determine whether a point is a solution of a system of equations. [3.1]
6(b) Solve a linear system by graphing. [3.1]
6(c) Solve a linear system using the Substitution Method. [3.2]

6(d) Solve a linear system using the Addition Method (i.e. the Elimination Method). [3.3]
6(e) Recognize inconsistent and dependent systems. [3.2, 3.3]
6(f) (Optional) Model word problems with linear systems. [3.4]

7. Polynomials

7(a) Simplify expressions using the laws of exponents. [4.1]
7(b) Use scientific notation. [4.1]
7(c) Recognize monomial, binomial, trinomial, and polynomial expressions [4.2]
7(d) Add and subtract polynomial expressions. [4.2]
$\mathbf{7 (e)}$ Recognize the degree of a polynomial expression. [4.2]
7(f) (Optional) Model word problems with polynomial functions. [4.2]
7(g) Multiply polynomials. [4.3]
7(h) Square a binomial. [4.3]
7 (i) (Optional) Cube a binomial. [4.3]
7 (j) (Optional) Divide a polynomial by a monomial. [4.4]
7(k) (Optional) Compute quotient and remainder using polynomial long division. [4.4]
7(1) Find the greatest common factor of several monomials. [4.5]
$\mathbf{7 (m)}$ Factor the greatest common factor out of a polynomial. [4.5]
7 (n) Factor a polynomial by grouping. [4.5]
7 (o) Factor trinomials. [4.6]
7 (p) Recognize and factor perfect square trinomials. [4.7]
$\mathbf{7 (q)}$ Factor a difference of squares. [4.7]
7(r) (Optional) Factor a sum or difference of cubes. [4.7]
7(s) Write and explain the zero-product rule [4.8]
$7(\mathrm{t})$ Solve polynomial equations by factoring. [4.8]

8. Rational expressions

8(a) Distinguish rational expressions from more general expressions. [5.1]
8(b) Reduce a rational expression to lowest terms. [5.1]
8(c) Multiply and divide rational expressions. [5.2]
$\mathbf{8 (d)}$ Find the least common denominator of two rational expressions. [5.3]

8(e) Add and subtract rational expressions. [5.3]
8(f) Reduce compound fractions. [5.4]
$\mathbf{8 (g)}$ Solve a rational equation in one variable. [5.5]
$\mathbf{8 (h)}$ Solve for one variable in a rational equation with several variables. [5.5]
8(i) (Optional) Solve proportions and similar triangles. [5.6]
8(j) (Optional) Recognize direct and inverse variation. [5.7]

9. Radicals

9(a) Correctly interpret and evaluate \sqrt{a} (the principal or nonnegative square root of a non-negative real number $a)$. [6.1]
$\mathbf{9 (b)}$ Find all real solutions of equations of the form $x^{2}=a$. [6.1]
$\mathbf{9 (c)}$ Correctly interpret and evaluate $\sqrt[n]{a}$, where n is any positive integer and a is a non-negative real number. [6.1]
$\mathbf{9 (d)}$ Find all real solutions of equations of the form $x^{n}=a$. [6.1]
$\boldsymbol{9}(\mathbf{e})$ Simplify expressions of the form $\sqrt[n]{a^{n}}$. [6.1]
$\mathbf{9}(\mathbf{f})$ Find the third side of a right triangle, given any two sides. [6.1]
$\mathbf{9}(\mathrm{g})$ Find the largest possible domain of a function involving radicals. [6.1]
$\mathbf{9}(\mathbf{h})$ Evaluate expressions of the form $a^{n / m}$. [6.2]
$9(i)$ Convert between radical notation and rational exponents. [6.2]
$\mathbf{9}(\mathbf{j})$ Simplify expressions involving rational exponents by using the laws of exponents. [6.3]
$\mathbf{9 (k)}$ Simplify radical expressions using the fact that $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$ when $a, b>0$. [6.3]
9(1) Add and subtract radical expressions. [6.4]
$\mathbf{9 (m)}$ Multiply radical expressions. [6.5]
$\mathbf{9}(\mathbf{n})$ Multiply radicals with different indices. [6.5]
9(o) Simplify radical expressions using the fact that $\sqrt[n]{a / b}=\sqrt[n]{a} / \sqrt[n]{b}$ when $a, b>0$. [6.6]
$\mathbf{9 (p)}$ Rationalize the denominator of a radical expression. [6.6]
$\mathbf{9 (q)}$ Solve equations involving one or two radical expressions. [6.7]

10. Quadratic equations and quadratic functions

$\mathbf{1 0 (a)}$ Solve quadratic equations by completing the square. [7.1]

10(b) Solve quadratic equations by using the Quadratic Formula. [7.2]
$\mathbf{1 0 (c)}$ Calculate the discriminant of a quadratic expression. [7.2]
$\mathbf{1 0 (d)}$ Use the discriminant to predict the number of real solutions of a quadratic equation. [7.2]

10(e) (Optional) Solve equations in quadratic form. [7.3]
$\mathbf{1 0}(\mathbf{f})$ Sketch the graph of a quadratic function. [7.4]
$\mathbf{1 0}$ (g) Find the vertex of a parabola. [7.5]
$\mathbf{1 0 (h) ~ S o l v e ~ q u a d r a t i c ~ o p t i m i z a t i o n ~ p r o b l e m s . ~ [7 . 5] ~}$

11. Polynomial and rational inequalities (Optional)

11(a) (Optional) Solve polynomial inequalities. [7.6]
11(b) (Optional) Solve rational inequalities. [7.6]

