Math 140 - Calculus 1 Measurable Outcomes

Mathematics Department, UMass Boston

Reference text: Numbers in brackets refer to sections of Stewart, Calculus, eighth edition Early Transcendentals

Note: Outcomes marked (Optional) may appear on the final exam with the unanimous consent of all instructors.

1. Review

1(a) Simplify expressions involving exponents.
$\mathbf{1 (b)}$ Use logarithms to solve exponential equations.
1(c) Use the properties of logarithms to simplify an expression.
$\mathbf{1}(\mathbf{d)}$ (Optional) Model a periodic phenomenon as a sine wave, determining its amplitude etc.
1(e) Without a calculator, evaluate $a^{0}, \log _{b}(1)$, and $\sin \theta$ and $\cos \theta$ for $\theta=k \pi / 2$ at least.

2. Slopes and rates of change

2(a) Approximate the slope of $f(x)$ at a point graphically. [2.1]
2(b) Approximate the slope of $f(x)$ at a point using a difference quotient. [2.1]
2(c) Find the average rate of change of a function from a table. [2.1]
2(d) Interpret the slope of a function as a rate of change / sensitivity, including units. [2.1]

3. Limits

3(a) Approximate a limit using a table. [2.2]
3(b) Distinguish between a finite limit, infinite limit, and no limit using a table. [2.2]
3(c) Approximate limits (including one-sided limits) from a graph. [2.2]
$\mathbf{3}(\mathbf{d})$ Understand that $\lim _{x \rightarrow a} f(x)$ does not depend on $f(a)$. [2.2]
$\mathbf{3 (e)}$ Determine the value of a limit given information about the corresponding one-sided limits. [2.2]
3(f) (Optional) Use the Squeeze Theorem to evaluate a limit. [2.3]
$\mathbf{3}(\mathbf{g})$ Find the limit of common functions at ∞ and $-\infty$. [2.6]
$\mathbf{3}(\mathbf{h})$ Find the limit of a ratio of functions at ∞ or $-\infty$ using formal algebraic manipulations. [2.6]

3(i) Find the limit of a ratio of functions at ∞ or $-\infty$ using informal reasoning about "lower-order terms". [2.6]

4. Continuity

4(a) Evaluate a limit using continuity. [2.3, 2.5]
4(b) Evaluate the limit of a rational function by simplifying and then using continuity. [2.3, 2.5]
4(c) Evaluate one-sided limits of a piecewise continuous function using continuity. [2.3, 2.5]
4(d) Given that $f(x)$ satisfies certain conditions, determine what other conditions are necessary in order for $f(x)$ to be continuous. [2.5]
4(e) Determine whether a given piecewise function is continuous at a point. [2.5]
4(f) Determine the location and type of discontinuities of $f(x)$ on [a, b]. [2.5]
4(g) Use the Intermediate Value Theorem to write an argument that proves that a function has a root on a given interval. [2.5]
4(h) Critique a given argument that uses the Intermediate Value Theorem. [2.5]
4(i) (Optional) Use the Bisection Method and the Intermediate Value Theorem to approximate the root of a function to a given degree of accuracy. [2.5]

5. The Derivative

$\mathbf{5 (a)}$ Evaluate the derivative of a function at a point using the limit definition. [2.7]
$\mathbf{5}(\mathbf{b})$ Sketch a rough graph of $f^{\prime}(x)$ given a graph of $f(x)$. [2.8]
$\mathbf{5}(\mathbf{c})$ Determine at which points a function is not differentiable, given its graph. [2.8]
$\mathbf{5}(\mathbf{d})$ Interpret the meaning of $f^{\prime}(a)$ as a rate of change / sensitivity. [2.7, 2.8]

6. Derivative formulas

6(a) Distinguish constants from non-constants. [3.1]
$\mathbf{6 (b)}$ Distinguish exponential functions from power functions. [3.1]
$\mathbf{6 (c)}$ Rewrite functions as powers of x when appropriate $(1 / x, \sqrt{x})$. [3.1]
6(d) Implicitly use linearity when taking derivatives. [3.1]
$\mathbf{6 (e)}$ Take the derivatives of polynomials and power functions. [3.1]
$\mathbf{6 (f)}$ Take the derivative of exponential functions. [3.1]
$\mathbf{6}(\mathbf{g})$ Take the derivative of trigonometric functions. [3.3]
$\mathbf{6 (h)}$ Take the derivative of logarithmic functions. [3.6]
6(i) Use the product rule when appropriate. [3.2]
$\mathbf{6 (j)}$ Use the quotient rule when appropriate. [3.2]
$\mathbf{6 (k)}$ Distinguish between function composition and function multiplication. [3.4]
6(1) Use the chain rule when appropriate. [3.4]
$\mathbf{6 (m)}$ Use implicit differentiation when appropriate. [3.5]
6(n) (Optional) Use logarithmic differentiation to find the derivative of $f(x)^{g(x)}$. [3.6]

7. Applications of Derivatives

7(a) Given the position function of an object, determine: [3.7]

- Its velocity
- Its acceleration
- When the object is moving up/down (forward/backward)
- When the object is speeding up
- The net distance traveled over a time interval
- The total distance traveled over a time interval

7(b) Solve an abstract related rates problem. (e.g. If $y=f(x)$, find $d y / d t$ when $x=3$ and $d x / d t=5$.) [3.9]
7(c) Model a physical situation as a related rates problem. [3.9]
$\mathbf{7 (d)}$ Use the derivative to write the equation of a tangent line. [3.10]
7(e) Use the tangent line / linearization to approximate a function's value at another point. [3.10]

7(f) (Optional) Use differentials to approximate how an error in x affects the error in $f(x)$. [3.10]
7(g) Write a logical argument that uses Rolle's Theorem to prove that a function has at most one root on a given interval. [4.2]
7(h) (Optional) Critique a flawed logical argument that misuses Rolle's Theorem. [4.2]
7 (i) Use the Mean Value Theorem to bound $f(b)$ given information about $f(a)$ and about $f^{\prime}(x)$ on $[a, b]$. [4.2]
$7(\mathbf{j})$ Model a physical situation in a way that it generates a problem like the above. [4.2]

8. Optimization

$\mathbf{8 (a)}$ Find the local and absolute maxima and minima of a function from its graph. [4.1]
$\mathbf{8 (b)}$ Determine the critical points of a function. [4.1]
$\mathbf{8 (c)}$ Find the absolute maximum and minimum of a continuous function on a closed interval. [4.1]
$\mathbf{8 (d)}$ Solve an abstract optimization problem with a two variable function and a constraint. [4.7]
$\mathbf{8 (e) ~ M o d e l ~ a n d ~ s o l v e ~ a ~ p h y s i c a l ~ o p t i m i z a t i o n ~ p r o b l e m ~ w i t h ~ a ~ t w o ~}$ variable function and constraint. [4.7]

9. Graphing with calculus

9(a) Determine where a graph is increasing / decreasing by analyzing the sign of $f^{\prime}(x)$. [4.3]
$\mathbf{9}(\mathbf{b})$ Determine where a graph is concave up / concave down by analyzing the sign of $f^{\prime \prime}(x)$. [4.3]
$\mathbf{9}(\mathbf{c})$ Find the inflection points of a function. [4.3]
$\mathbf{9}(\mathbf{d})$ Use the First Derivative Test to classify a critical point as a local maximum, local minimum, or neither. [4.3]
$\mathbf{9 (e)}$ Use the Second Derivative Test to classify a critical point as a local maximum, local minimum, or indeterminate. [4.3]
$\mathbf{9}(\mathbf{f})$ Sketch a piece of a graph with a given sign of f^{\prime} and $f^{\prime \prime}$. [4.3]
$\mathbf{9}(\mathrm{g})$ Given a graph, determine the intervals where f^{\prime} is positive and negative. [4.3]
$\mathbf{9}(\mathbf{h})$ Given a graph, determine the intervals where $f^{\prime \prime}$ is positive and negative. [4.3]
$\mathbf{9}(\mathbf{i})$ Sketch the graph of a polynomial using information about f^{\prime} and $f^{\prime \prime}$. [4.5]
$\mathbf{9}(\mathbf{j})$ Find the location of the vertical asymptotes of a function. [2.2, 4.5]
$\mathbf{9 (k)}$ Find the location of the horizontal asymptotes of a function. [2.6, 4.5]
$\mathbf{9 (1)}$ Sketch the graph of a rational function using asymptotes and information about f^{\prime}. [4.5]

10. Antiderivatives

10(a) Calculate the antiderivative of a constant. [4.9]
$\mathbf{1 0}$ (b) Calculate the antiderivative of powers of x, including $1 / x$. [4.9]
$\mathbf{1 0 (c)}$ Calculate the antiderivative of exponential functions. [4.9]
$\mathbf{1 0 (d)}$ Calculate the antiderivative of $\sin x$ and $\cos x$. [4.9]
$\mathbf{1 0 (e)}$ Implicitly use linearity when calculating antiderivatives. [4.9]
$\mathbf{1 0 (f)}$ Solve the initial-value problem $d y / d x=f(x), y(a)=b$. [4.9]
$\mathbf{1 0}(\mathrm{g})$ Find the position of an object given its velocity function and one initial value. [4.9]
10(h) (Optional) Find the position of an object given its acceleration function and two initial values. [4.9]

11. Areas, Riemann Sums, and Definite Integrals

11(a) Approximate the area under a curve using a graph and a specified strategy. [5.1]
11(b) Approximate the accumulated change using a table of the rate of change. (e.g. estimate distance traveled given a table of velocity) [5.1]
11(c) Approximate the area under a curve using a Riemann sum, given a formula for $f(x)$. [5.1]
11(d) Evaluate a definite integral of a function using its graph and basic plane geometry (area of triangles, quadrilaterals, portions of circles). [5.2]
11(e) Approximate a definite integral using a Riemann sum with specified parameters. [5.2]

12. Fundamental Theorem of Calculus

12(a) Evaluate a definite integral of a linear combination of basic functions using the Fundamental Theorem of Calculus. [5.3]
12(b) Find the derivative of a function defined in terms of an integral, using the Fundamental Theorem of Calculus. [5.3]

12(c) Evaluate an indefinite integral of a linear combination of basic functions. [5.4]
12(d) Evaluate an indefinite integral of a product or quotient of functions by simplifying the integrand first. [5.4]
$\mathbf{1 2 (e)}$ Interpret a definite integral in terms of accumulated change. [5.4]
12(f) Evaluate an indefinite integral in the form $\int c f(g(x)) \cdot g^{\prime}(x) d x$ using a substitution. [5.5]
12(g) Evaluate a definite integral in the form $\int c f(g(x)) \cdot g^{\prime}(x) d x$ using a substitution. [5.5]
12(h) Evaluate an indefinite or definite integral using a 'linear shift' substitution. (e.g. $\int x^{2} \sqrt{2 x+3} d x$). [5.5]

13. Applications of Integrals

13(a) (Optional) Find the points of intersection of two curves, such as a line and parabola, two parabolas, or two functions of the form $c x^{n}$. [6.1]

13(b) (Optional) Find the area between curves using a definite integral. [6.1]
13(c) (Optional) Find the volume of a solid of revolution using disks or washers. [6.2]

