Math 130-Precalculus Measurable Outcomes

Mathematics Department, UMass Boston

Reference text: Numbers in brackets refer to sections of Larson, Precalculus, A Concise Course, third edition.

Note: Outcomes marked (Optional) may appear on the final exam with the unanimous consent of all instructors.

A. Fundamental Concepts of Algebra

A(a) Simplify algebraic expressions containing minus signs, such as $-(a b)$. [A.1]
A(b) Apply properties of exponents, including simplifying rational exponents. [A.2]
A(c) Use scientific notation. [A.2]
A(d) Perform operations with polynomials, including special products and squares of binomials. [A.3]
A(e) Factor polynomials, including those with special forms. [A.3]
A(f) Simplify rational expressions and arithmetic combinations of rational expressions. [A.4]
$\mathbf{A}(\mathrm{g})$ When simplifying fractions, divide out common factors, not terms. [A.4]
$\mathbf{A (h) ~ S o l v e ~ e q u a t i o n s ~ i n v o l v i n g ~ f r a c t i o n a l ~ e x p r e s s i o n s . ~ [A . 5] ~}$
A(i) Recognize an extraneous solution. [A.5]
$\mathbf{A}(\mathbf{j})$ Solve quadratics in one variable by factoring, completing the square, or the quadratic formula. [A.5]
$\mathbf{A}(\mathbf{k})$ Find all real solutions of the equation $x^{2}=p$. [A.5]
A(l) Solve equations with absolute values. [A.5]
A(m) Word problems: algebraic representation and subsequent solution. [A.6]

1. Functions and their Graphs

1(a) Apply the Distance Formula and the Midpoint Formula. [1.1]
$\mathbf{1 (b)}$ Graph an equation by making a table of points. [1.2]
1(c) Apply the Graphical and Algebraic Tests for Symmetry. [1.2]
1(d) Write the Standard Form of the Equation of a Circle with radius r and center (h, k). [1.2]
$\mathbf{1 (e)}$ For a given line: find the slope and the point-slope and slopeintercept equations. [1.3]
$\mathbf{1 (f)}$ Describe the features and equations of horizontal and vertical lines. [1.3]
$\mathbf{1}(\mathrm{g})$ Use their slopes to determine whether two given lines are parallel, perpendicular, or neither. [1.3]
$\mathbf{1}(\mathrm{h})$ Recognize whether a given relationship is a function. [1.4]
$\mathbf{1}$ (i) Use the notation $f(x)$ for a given function f. [1.4]
$\mathbf{1}(\mathbf{j})$ Find the implied domain of a given function. [1.4]
$\mathbf{1 (k)}$ Evaluate a difference quotient. [1.4]
1(1) Define a function graphically: the Vertical Line Test. [1.5]
$\mathbf{1 (m)}$ Apply the Tests for Even and Odd Functions. [1.5]
$\mathbf{1}(\mathbf{n})$ Recognize the graphs of constant, identity, absolute value, square root, squaring, cube root, cubing, reciprocal, squared reciprocal, upper semicircle, and greatest integer functions. [1.6]
$\mathbf{1 (o)}$ Describe vertical and horizontal shifts, noting how the graph and the equation were changed. [1.7]
$\mathbf{1 (p)}$ Describe vertical and horizontal reflections, noting the change in the equation and the graph. [1.7]
$\mathbf{1}(\mathbf{q})$ Recognize vertical and horizontal stretches and compressions. [1.7]
1(r) Describe arithmetic combinations and compositions of two functions. [1.8]
$\mathbf{1 (s)}$ Define an inverse function and show the relationship between the graphs of the original function and the inverse function. [1.9]
$\mathbf{1}(\mathrm{t})$ Describe the required relationship between the domains and ranges of the original and inverse functions. [1.9]
$\mathbf{1 (u)}$ Define a one-to-one function and use the Horizontal Line Test for verification. [1.9]
$\mathbf{1 (v)}$ Find an inverse function algebraically. [1.9]

2. Quadratic Functions

2(a) For a quadratic in the form $f(x)=a x^{2}+b x+c$, complete the square to get it into standard form. [2.1]

2(b) Graph a quadratic equation in standard form, finding the vertex, intercepts, and the equation of the axis of symmetry. [2.1]
2(c) (Optional) Solve quadratic inequalities. [Not in textbook, but is a small step beyond the material in 2.1.]

3. Exponential and Logarithmic Functions

3(a) Graph an exponential function. [3.1]
$\mathbf{3 (b)}$ State the One-to-One Property of Exponents and use it to solve equations. [3.1]
3(c) Become familiar with the natural base e. [3.1]
$\mathbf{3}(\mathbf{d})$ Use the definition of the logarithmic function with base a to evaluate logarithms. [3.2]
$\mathbf{3 (e)}$ Use the one-to-one property of logarithms to solve a log equation and use the inverse properties of a logarithm function to sketch its graph. [3.2]
$\mathbf{3 (f)}$ Evaluate and graph the natural logarithm function.
$\mathbf{3 (g)}$ Apply the change of base formula for logarithms. [3.3]
3(h) Apply the Product, Quotient, and Power Properties of Logarithms. [3.3]
3(i) Solve logarithmic and exponential equations. [3.4]
$\mathbf{3}(\mathbf{j})$ Find the doubling time of a given exponential growth curve. [3.4]
$\mathbf{3 (k)}$ Fit an exponential growth or decay curve to two given points. [3.5]

4. Trigonometry

4(a) Define radian measure and determine the radian equivalents of some common angles. [4.1]
4(b) Define and find the complement and suplement for certain angles. [4.1]
4(c) Convert between degrees and radians. [4.1]
4(d) Find arc length, given the radius and the central angle. [4.1]
4(e) Define and evaluate sin and cos on the unit circle, giving domain, period, and even/odd properties. [4.2]
4(f) Define and evaluate at special angles the six trigonometric functions of a right triangle. [4.3]
4(g) Express the tangent, cotangent, secant, and cosecant functions in terms of the sine and cosine functions. [4.3]

4(h) State the Pythagorean identities. [4.3]
4(i) Simplify the cofunction of the complementary angle. [4.3]
$4(\mathrm{j})$ Solve a right triangle. [4.3]
$\mathbf{4 (k)}$ Find the exact values of the six trigonometric functions at an arbitrary angle, given a point on the terminal side of the angle drawn in standard position. [4.4]
4(1) Find the exact values of the six trigonometric functions at special angles in arbitrary quadrants. [4.4]
$\mathbf{4 (m)}$ Graph the sine and cosine, stating the maximum and minimum points and the intercepts. [4.5]
4(n) Transform the sine and cosine graphs, stating amplitude and period. [4.5]
4(o) (Optional) Describe the phase shift of a transformed sine or cosine function. [4.5]
$\mathbf{4 (p)}$ Sketch the graph of the tangent function. [4.6]
4(q) Define and graph the inverse sine, cosine, and tangent functions. [4.7]
4(r) Evaluate the composition of a trig function with an inverse trig function or vice versa. [4.7]
4(s) Solve a right triangle to find a distance in a real-life application. [4.8]

5. Analytic Trigonometry

$\mathbf{5 (a)}$ Use the fundamental trigonometric identities (page 372) to evaluate a function or simplify an expression. [5.1]
5(b) Verify a trigonometric identity. [5.2]
$\mathbf{5 (c)}$ Solve trigonometric equations. [5.3]
$\mathbf{5 (d)}$ Apply sum and difference and double-angle formulas for the sin and cos. [5.4-5.5]
$\mathbf{5 (e)}$ Derive a half-angle formula for the sine or the cosine. [5.5]
$\mathbf{5 (f)}$ (Optional) Derive a triple-angle formula for the sine or the cosine. [5.5]

